二次関数と二次方程式/不等式 **lmin**.

二次関数と二次方程式/不等式のまとめ!

※ 二次方程式/不等式のまとめ!

これまで、二次関数と二次方程式、二次関数と二次不等式の関係を学んできたので、それを全てまとめて おこう!

 $\Diamond y = ax^2 + bx + c$ において、

a > 0 , 判別式 $D = b^2 - 4ac$ (1 次の係数が偶数のとき、 $D/4 = b'^2 - ac$)のとき

	D > 0	D = 0	D < 0
y = ax² + bx + c のグラフ <<注意!!>> グラフと "y 軸"の位置に 全く関係はないよ!	[1]2点で交わる y	[2] 1 点で交わる(接する)	[3]交わらない y ↑
$ax^2 + bx + c = 0$ の解	異なる2つの実数解 $x = \alpha, \beta$	$ \begin{array}{c c} & a & x \\ & - 重解 \\ & x = \alpha \left(= -\frac{b}{2a} \right) \end{array} $	実数解なし (虚数解)
$ax^2 + bx + c > 0$ の解	$x < \alpha, \beta < x$	$x = \alpha \left(= -\frac{b}{2a} \right)$ 以外の実数全体	実数全体 (すべての実数)
$ax^2 + bx + c \ge 0 \mathcal{O}$ 解	$x \leq \alpha, \beta \leq x$	実数全体 (すべての実数)	実数全体 (すべての実数)
$ax^2 + bx + c < 0$ の解	$\alpha < x < \beta$	解なし	解なし
$ax^2 + bx + c \le 0 \mathcal{O}$ 解	$\alpha \le x \le \beta$	$x = \alpha \left(= -\frac{b}{2a} \right)$	解なし

上の表をすべて覚える必要はない! というか、覚えちゃいけない! 大事なのは、判別式が正、0、負の とき、それぞれグラフとX軸がどのような位置関係にあるのか、ってこと。それを考えるだけで、上の表は 覚えなくても、完成させることができる。

注意すべきは、不等式を解くときは、等号(=)が入るのか入らないのかだけで、答えが変わるというこ と。等号は見逃しやすいので、よく確かめてから問題を解こう!

困ったら、雑でいいので、グラフを書いてみよう!

【練習問題で in.→out.】次のページへ

次の問題に答えて、知識をアウトプットしよう!!

• • • • • • • • • • • • • • • • • • •			
	11	4	
	u	. L	-

 $y=ax^2+bx+c$ において、a>0 , 判別式 $D=b^2-4ac$ ($D/4=b'^2-ac$)のときの次の表を埋めよう.

	<i>D</i> > 0	D = 0	D < 0
y = ax ² + bx + c のグラフ を書こう			
$ax^2 + bx + c = 0$ の解			
$ax^2 + bx + c > 0$ の解			
$ax^2 + bx + c \ge 0$ の解			
$ax^2 + bx + c < 0$ の解			
$ax^2 + bx + c \le 0 \mathcal{O}$ 解			

-問題 2				
 次の文の空欄に当てはまる式(イは記号)を答えよ				
$x^2-2x+p \ge 0$ の不等式がすべての実数で成り立つような p の範囲を考える。				
判別式 $D(D/4) =$ ア より、この)不等式がすべての実数で成り立つためには、			
D(D/4) 【 イ 】 O であればよいから、p の範囲は	ウとなる。			
	2			
3				